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Abstract—Migrating services in an edge-cloud environ-
ment poses unique challenges, including heterogeneous en-
vironments, potential failures, and uneven resource distri-
bution. This paper studies and evaluate reactive and predic-
tive migration approaches to support live migration in case
of edge cloud computing failures. Telemetry information
relate to edge cloud computing have been considered to
trigger migration, whereas deadlock prevention algorithm
has been used to determine and select the target device
to migrate services. The paper evaluates these strategies
by comparing resource utilization, assessing differences
between predictive and reactive migration and handling
multiple migrations for tenants hosting numerous appli-
cations. Experimental results have shown that predictive
migration can reduce the downtime of the hosted services.
Additionally, the total migration cost can be increased for
both scenarios where the containers can be migrated to
different edge devices due to lack of available resources.

Index Terms—edge, migration, reactive, predictive,
MADM, LSTM, banker’s algorithm, edge computing

I. INTRODUCTION

Edge computing is a decentralized computing
paradigm that brings computation and data storage closer
to the location where it is needed, data is processed and
analyzed at or near the data source (the ”edge”) [20].
To maintain the availability and Qos of edge, several
different techniques of resource allocation must be used
to support migration.

Migration in edge computing can be a complex and
challenging process due to the unique characteristics and
constraints of edge environments as in edge there are
more occurrence of multiple failure. Edge may also sup-
port multiple tenants, which requires isolation from each
other for privacy. One tenant can host few application
making the multiple container migration process rather
complex. Migration can be either reactive or predictive.
In the case of reactive, a failure is detected by measuring

the computing resources. In the case of preventive,
AI/ML models can be used to predict the occurrence
of a failure. In both cases, hosted applications must
be transferred to another edge device that has enough
resources to support the transferred applications.

The aim of this paper is to compare reactive vs
preventive migration when a tenant that may host several
applications must carry out migration. Different metrics
such as downtime, cost of migration and completion for
different number of hosted applications have been used
for this comparison.

The paper is organised as follows: Section 2 presents
the state of the art and the paper contribution; Section
3 describes the methodology and both reactive and
preventive algorithms that have been developed; Section
4 outlines the experimental methodology, scenarios and
simulation results and Section 5 concludes the findings.

II. STATE-OF-THE-ART

In Edge network for optimal resource management
and quality of service different algorithms are being
used such as predictive, reactive and hybrid approach
[8]. Other algorithms like load balancing algorithms
distribute workloads evenly across edge nodes, by taking
into account resource availability and network conditions
for improved balance [9]. Deadlock avoidance algo-
rithms prevent disruptions in edge migrations. A spe-
cialized deadlock avoidance algorithm ensures smooth
migrations as discussed in [10]. Further in this section
the current work on migration is discussed.

A. Edge-based Migration Techniques

The first research paper by T. G. Rodrigues, K. Suto,
H. Nishiyama and N. Kato aims for low Service Delay,
resulting in high Quality of Service by focusing on



both computation and communication elements to trig-
ger migration [1]. This approach accommodates diverse
services, using a mathematical model to configure virtual
server migration and transmission power. Experimental
results consistently favor this approach for minimizing
Service Delay.

The Authors in [2] explore methods to optimize
replica placement and migration in edge cloud envi-
ronments, aiming to boost data transfer speed, reduce
bandwidth usage, enhance reliability, and maintain load
balance. The evaluation asserts that the proposed solution
notably reduces downtime, even in scenarios with high
state update volumes. The Authors in [3] propose an
architecture that has cognitive capabilities and knowl-
edge about the network environment to offer elastic
cognitive computing services for energy efficiency and
a superior Quality of Experience (QoE). Experimental
results demonstrate that the architecture delivers ultra-
low latency, an excellent user experience, improved ser-
vice quality, high energy efficiency and resource savings.
The Next research paper is efficiently scheduling live
container migrations in large-scale edge computing envi-
ronments for multi container migration. It offers a novel
approach to address the complex issue of scheduling
multiple live container migrations in large-scale edge
computing environments to optimize resource utilization
and minimize downtime in edge computing scenarios
[4]. The Follow Me Cloud Prototype (FMC) facilitates
seamless service migration between data centres, often
acting as edge servers, influenced by factors like geo-
graphical distance and workload to balance migration
cost and enhance mobile user Quality of Service (QoS).
FMC architecture comprises an FMC controller and an
edge server/gateway mapping entity working alongside
mobile cloud components like data centres and gateways
to manage distributed edge servers in mobile operator
networks [5]. Markov Decision Processes (MDPs) guide
service migration decisions. The one-dimensional MDP
model suits linear mobile user movements, using states
for distances from edge servers and actions for migration
choices. Transition probabilities and rewards aid optimal
decisions. A two-dimensional MDP model addresses
2D mobile user movement scenarios, optimizing ser-
vice placement based on distance and network topology
while managing state complexity [6]. Time window-
based service migration minimizes costs over a specified
period with predictive look-ahead windows. It deter-
mines optimal window sizes, finding service placement
sequences based on prediction costs through a shortest-
path approach, balancing prediction deviation and time

division impacts [7].

B. Contribution

Existing research works lack in making a comparison
between reactive and preventive migration. We evaluate
the complexity for both reactive and preventive migra-
tion in a new edge instance. The reactive migration
raises the need to make decision by considering met-
rics such as available CPU and memory over the time
and considering their dependencies. Multiple Attribute
Decision Making (MADM) and Analytic Hierarchy Pro-
cess (AHP) are used in decision-making [17]. MADM
methods help in ranking or choosing alternatives based
on these multiple attributes. AHP is one of the various
methods used in MADM. It decomposes the decision
problem into a hierarchy of criteria and sub-criteria,
performs pairwise comparisons to determine the relative
importance or weights of these criteria and then evaluates
the alternatives against each criterion. At last, overall
scores for each alternative based on the weighted criteria
is calculated and the alternative with the highest score
is selecting as the preferred choice. Predictive migration
relies on historical data and machine learning to proac-
tively forecast resource demands and improve large-scale
edge environment migrations [11]. Reactive migration
addresses real-time resource issues like failures, optimiz-
ing resource use and reducing service interruptions. It
suits scenarios where predictive models may falter.

III. SYSTEM MODEL

A. Methodology and Design

The network structure consists of a series of edge
instances that are connected to the edge cloud orches-
tration. The network uses both control flow and data
flow paths. Data flow path is used among the network
devices for usual data exchange, where the control
flow path is used for the exchange of telemetry related
information between the device and the Orchestration.
The orchestration has been designed to continuously
monitor the Edge network and get the telemetry of all
devices, containers related to CPU, memory, network,
and storage. Network data such as round-trip time are
collected. All the observations are stored in a time series
database. Two different migration decision algorithms
have been implemented: reactive and predictive. Figure
1, illustrate the system model to support both reactive
and predictive migration.

B. Preventive Migration Algorithm

LSTM trained model is used to predict the upcoming
failure or overhead in the network of edge devices.
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Fig. 1: System Model

LSTMs consist of memory cells that can store and
retrieve information over long sequences [16]. These
memory cells have three gates: an input gate, an output
gate, and a forget gate. In this research study, LSTM
model has been created using time-series CPU and
memory data from a real-time experimentation. An ex-
perimental testbed with Raspberry PIs have been used to
collect real-time data with respect to CPU and memory
usage and track node’s failures [18]. Historical data from
1 week have been used to train LSTM. The following
formula has been used to determine resource utilisation:

The Equation used for selecting the destination Edge
Device, where the victim container must be migrated :

f(Ed) = min(λ1υ(Ei) + λ2RTT (Ei)) (1)

where, υ : utilisation,RTT : Round− TripT ime,
Ed: Destination node, Ei: Edge nodes,
λ1 + λ2 = 1 (2)

υ = υ(CPU) + υ(nw) + υ(storage) + υ(mem) (3)

Calculation of the expected required resource by the
stressed container:

υ(Ci) = µ(Ci) + 2σ(Ci) (4)

where
υ(Ci) : utilizationofcontainer, µ : mean, σ :

Standarddeviation

Therefore, 80% of the data have been used to train
the LSTM model and 20% of the data have been used to
validate the model. The following Figure 2 illustrates the
comparison between the actual vs the predicted (LSTM)
value.

Fig. 2: predicted vs actual values

In this respect, Banker’s algorithms has been used
by taking into account the resource requirements of the
container in terms of CPU and memory. In case of a
tenant, an aggregate request is made from all hosted
containers. If there is no available edge device, the
migration will segment the containers separately. The
algorithm for all the steps is presented in Algorithm 2.

C. Reactive Migration Algorithm

In the reactive algorithm, MADM-AHP has been
considered to determine the unified metric from the
computing resources (CPU, memory). Under MADM-
AHP, resource attributes are defined as criteria, for
each pair to determine their relative importance with
respect to a threshold [17]. Similar to the previous
case, Banker’s algorithm has been used to select an
edge device to migrate the container(s), so that deadlock
avoidance criterion is met. Banker’s algorithm is used
for the migration selection. The Banker’s algorithm is a
deadlock avoidance algorithm [13]. Its primary purpose
is to ensure that the resources can safely be requested
and released without leading to a deadlock situation.
The Banker’s algorithm helps prevent such deadlocks by
carefully allocating and managing resources.
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Algorithm 1: Reactive Migration
Result: migration started
host list;
while 1 do

each host metric threshold;
if migration decision then

MADM for selecting destination;
Banker’s Algorithm for selecting

destination Node;
if Single node is sufficient for all
container then

trigger migration;
else

while all containers get selected do
segment containers;

end
trigger migration;

end
else

sleep 1;
end

end

Algorithm 2: Predictive Migration
Result: migration started
host list;
while 1 do

each host use LSTM model on host data;
if migration decision then

Banker’s Algorithm for selecting
destination Node;

if Single node is sufficient for all
container then

trigger migration;
else

while all containers get selected do
segment containers;

end
trigger migration;

end
else

sleep 1;
end

end

IV. SCENARIOS AND RESULTS

A. Experimental set-up

The implementation set-up is shown in Figure 3. An
edge network has been designed and developed using

Fig. 3: Implementation set-up

GNS-3 [14]. Some of the characteristics of the exper-
imental set-up are the following: the number of edge
devices have been customised and each node can run to
1 to 10 containers. Psutil [18] has been used to collect
computing data from devices and store them in InfluxDB
[15]. Both reactive and preventive migration algorithms
have been implemented in Python. We have run three
different scenarios with 10, 50 and 100 edge nodes.
The orchestration application situated outside the edge
network, establishes connections with all edge devices
and comprises two modules: the monitoring agent and
the migrating agent. Both these modules are linked
to a database and a dashboard. The monitoring agent
continuously gathers and stores data from all devices
within the network, focusing on resource utilization
of the devices and their contained containers. These
observations are consistently recorded in a time-series
database. The migrating agent plays a crucial role in
the system, reading data from the database at predefined
intervals, computing moving averages, and comparing
the results with predefined thresholds.

B. Scenarios

The experimental performance metrics include the
comparison between reactive and predictive migration
for different number of edge nodes increases, running
different number of containers. We are considering the
following parameters:

• Downtime: In predictive mode, the downtime aligns
with the migration time. In contrast, for the reactive
mode, downtime can increase if a container fails
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during the monitoring cycle, extending the down-
time to one complete cycle time (This is the time to
deploy the container plus the time required to start
monitoring it). This results in a minimum downtime
equivalent to the migration time and a maximum
downtime equivalent to the migration time plus one
monitoring cycle time.

• Cost of migration: The cost of migration measures
the time required for saving a container image,
transferring it to the destination node, and restoring
the container to the new destination. This mea-
surement is consistent for both the predictive and
reactive methods, and it’s evaluated with the number
of nodes set at 5, 10, and 20. We analyze the cost of
migration relative to the number of nodes, assessing
the failure rate as the number of containers within
an edge node grows, and investigating the impact
of tenant hosting multiple containers by comparing
the migration of containers to a single node versus
distributing them across multiple nodes.

C. Experimental Results Discussion

Figure 5 illustrates the downtime for both algorithms
for different number of nodes (10, 50, 100). It is shown
(as expected), that the preventive algorithm detects in
advance the potential failure, providing a reduction to
downtime for all scenarios, by approximately 37%. Fig-
ure 4 and Figure 7, illustrates the total average migration
costs for both scenarios. As expected, the transfer time
of the containers contributes mainly (67%) to the total
migration cost. As the number of edge nodes increase,
the migration time gets larger since more traffic con-
tention takes places within the backhauling links. The
following Figure 6 illustrates the average migration cost
for single versus segmented container migration for both
algorithms. As the number of containers increase, the
migration costs for segmented the containers to multiple
instances goes higher due to the complexity of Banker
selection process.

V. CONCLUSION

This paper makes a comparison between reactive vs
preventive live migration foe edge by using parameters
such as migration cost, downtime and tenant migration
complexity. For this purpose, an edge-based experimen-
tal testbed has been built in GNS-3 integrating telemetry,
monitoring and assessment along with database tools.
The migrations have been tested in both small and com-
plex network scenarios, demonstrating its scalability. A
comparison between reactive and predictive approaches
revealed the advantages of predictive migration in terms

Fig. 4: migration time along with increase of node

Fig. 5: maximum downtime in predictive vs reactive
migration

of resource utilization. The impact of window size on
prediction accuracy was observed, emphasizing the need
for an optimal balance of loss function and time for
migration. Less containers goes to unstable state in pre-
dictive migration. Both reactive and predictive migration
strategies proved effective, with a focus on minimizing
image transmission time and achieving stable container
states. Multiple container migration focused for support-
ing multi-application tenants and addressing edge com-
puting challenges on multi failure. Overall, this research

Fig. 6: migration with segment
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Fig. 7: Migration cost

contributes to enhancing quality of service and resource
management in edge computing environments. As part
of continuous work, this study can be expanded to en-
compass various container types. Additionally, exploring
concurrent migration processes for scenarios involving
multiple containers can enhance migration efficiency.
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